Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Restriction to Subgroups

نویسندگان

چکیده

Let $(G,G_1)$ be a symmetric pair of holomorphic type, and we consider Hermitian spaces $D_1=G_1/K_1\subset D=G/K$, realized as bounded domains in complex vector $\mathfrak{p}^+_1\subset\mathfrak{p}^+$ respectively. Then the universal covering group $\widetilde{G}$ $G$ acts unitarily on weighted Bergman space $\mathcal{H}_\lambda(D)\subset\mathcal{O}(D)$ $D$. Its restriction to subgroup $\widetilde{G}_1$ decomposes discretely multiplicity-freely, its branching law is given explicitly by Hua-Kostant-Schmid-Kobayashi's formula terms $K_1$-decomposition $\mathcal{P}(\mathfrak{p}^+_2)$ polynomials orthogonal complement $\mathfrak{p}^+_2$ $\mathfrak{p}^+_1$ $\mathfrak{p}^+$. The object this article compute inner product $\big\langle f(x_2),{\rm e}^{(x|\overline{z})_{\mathfrak{p}^+}}\big\rangle_\lambda$ for $f(x_2)\in\mathcal{P}(\mathfrak{p}^+_2)$, $x=(x_1,x_2)$, $z\in\mathfrak{p}^+=\mathfrak{p}^+_1\oplus\mathfrak{p}^+_2$. For example, when $\mathfrak{p}^+$, are tube type $f(x_2)=\det(x_2)^k$, introducing multivariate generalization Gauss' hypergeometric ${}_2F_1$. Also, an application, construct $\widetilde{G}_1$-intertwining operators (symmetry breaking operators) $\mathcal{H}_\lambda(D)|_{\widetilde{G}_1}\to\mathcal{H}_\mu(D_1)$ from discrete series representations those $\widetilde{G}_1$, which unique up constant multiple sufficiently large $\lambda$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hankel Operators on the Bergman Space of Bounded Symmetric Domains

Let ii be a bounded symmetric domain in C with normalized 2 volume measure dV . Let P be the orthogonal projection from L (il, dV) 2 2 onto the Bergman space La(Q) of holomorphic functions in L (ii, dV). Let P be the orthogonal projection from L (ii, dV) onto the closed subspace of antiholomorphic functions in L (ii, dV). The "little" Hankel operator h, with symbol / is the operator from La(Ci)...

متن کامل

Bounded Holomorphic Functions on Bounded Symmetric Domains

Let D be a bounded homogeneous domain in C , and let A denote the open unit disk. If z e D and /: D —► A is holomorphic, then ß/(z) is defined as the maximum ratio \Vz(f)x\/Hz(x, 3c)1/2 , where x is a nonzero vector in C and Hz is the Bergman metric on D . The number ßf(z) represents the maximum dilation of / at z . The set consisting of all ß/(z), for z e D and /: D —► A holomorphic, is known ...

متن کامل

Nearly Holomorphic Functions and Relative Discrete Series of Weighted L-spaces on Bounded Symmetric Domains

Let Ω = G/K be a bounded symmetric domain in a complex vector space V with the Lebesgue measure dm(z) and the Bergman reproducing kernel h(z, w). Let dμα(z) = h(z, z̄) dm(z), α > −1, be the weighted measure on Ω. The group G acts unitarily on the space L(Ω, μα) via change of variables together with a multiplier. We consider the discrete parts, also called the relative discrete series, in the irr...

متن کامل

Complex Dynamical Systems on Bounded Symmetric Domains

We characterize those holomorphic mappings which are the innn-itesimal generators of semi-ows on bounded symmetric domains in complex Banach spaces.

متن کامل

Berezin Transform on Real Bounded Symmetric Domains

Let D be a bounded symmetric domain in a complex vector space VC with a real form V and D = D∩V = G/K be the real bounded symmetric domain in the real vector space V . We construct the Berezin kernel and consider the Berezin transform on the L2-space on D. The corresponding representation of G is then unitarily equivalent to the restriction to G of a scalar holomorphic discrete series of holomo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry Integrability and Geometry-methods and Applications

سال: 2022

ISSN: ['1815-0659']

DOI: https://doi.org/10.3842/sigma.2022.033